RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2001 Volume 4, Number 2, Pages 138–154 (Mi mt17)

This article is cited in 3 papers

Elliptic Eigenvalue Problems Involving an Indefinite Weight Function

S. G. Pyatkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We study elliptic eigenvalue problems with indefinite weight function; i.e., the problems $Lu=\lambda g(x)u$ ($x\in G\subset\mathbb R^n$) and $B_ju\big|_{\Gamma}=0$ ($j=\overline{1,m}$), where $L$ is a selfadjoint (in $L_2(G)$) elliptic operator, $g(x)$ is a measurable function changing sign in $G$, and $\{B_j\}$ is a collection of boundary operators. Under consideration is the question on the unconditional basis property of eigenfunctions and associated functions of this problem in the space $L_2$ with weight $|g|$.

Key words: elliptic eigenvalue problem, indefinite weight function, weighted Sobolev space, Riesz basis property.

UDC: 517.95

Received: 08.12.1998


 English version:
Siberian Advances in Mathematics, 2000, 10:4, 134–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025