RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2001 Volume 4, Number 1, Pages 18–24 (Mi mt2)

Separable Conservativity

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We introduce separable conservativity, a natural property of independent Boolean families of valuation rings. For families with this property, the validity of the geometric local-global principle implies the validity of a stronger principle, the arithmetic local-global principle.

Key words: multi-valued field, local-global principle.

UDC: 510.53

Received: 22.12.2000


 English version:
Siberian Advances in Mathematics, 2001, 11:4, 41–46

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025