RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2007 Volume 10, Number 2, Pages 19–61 (Mi mt20)

This article is cited in 2 papers

The Traces of Bessel Potentials on Regular Subsets of Carnot Groups

S. K. Vodop'yanova, I. M. Pupyshevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State Technical University

Abstract: We prove the direct theorem on the traces of the Bessel potentials $L^\alpha_p$ defined on a Carnot group, on the regular closed subsets called Ahlfors $d$-sets. The result is convertible for integer $\alpha$, i.e., for the Sobolev spaces $W^\alpha_p$ (the converse trace theorem was proven in [1]). This theorem generalizes A. Johnsson and H. Wallin's results [2] for Sobolev functions and Bessel potentials on the Euclidean space.

UDC: 517.54:517.813.52

Received: 14.02.2007


 English version:
Siberian Advances in Mathematics, 2008, 18:1, 44–75

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025