RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2007 Volume 10, Number 2, Pages 163–186 (Mi mt25)

This article is cited in 5 papers

A Discrete Norm on a Lipschitz Surface and the Sobolev Straightening of a Boundary

A. I. Parfenov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: Let a piece of the boundary of a Lipschitz domain be parameterized conventionally and let the traces of functions in the Sobolev space $W^2_p$ be written out through this parameter. In this space, we propose a discrete (diadic) norm generalizing A. Kamont's norm in the plane case. We study the conditions when the space of traces coincides with the corresponding space for the plane boundary.

Key words: Lipschitz domain, Lipschitz function, discrete norm, diadic number, straightening, trace, Besov space, weighted space.

UDC: 517.98

Received: 21.02.2007


 English version:
Siberian Advances in Mathematics, 2008, 18:4, 258–274

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024