RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2014 Volume 17, Number 1, Pages 99–122 (Mi mt268)

This article is cited in 8 papers

The generalized Itô–Venttsel' formula in the case of a noncentered Poisson measure, a stochastic first integral, and a first integral

E. V. Karachanskaya

Pacific National University, Khabarovsk, Russia

Abstract: We deduce an analog of the Itô–Venttsel' formula for an Itô system of generalized stochastic differential equations (GSDE) with noncentered measure on the basis of a stochastic kernel of an integral invariant. We construct a system of GSDE whose solution is a kernel of an integral invariant connected with a solution to GSDE with noncentered measure. We introduce the notion of a stochastic first integral of a system of GSDE with noncentered measure and find conditions under which a random function is a first integral of a given system of GSDE.

Key words: Itô–Venttsel' formula, generalized stochastic differential equation, noncentered Poisson measure, kernel of an integral invariant, stochastic first integral.

UDC: 519.21

Received: 08.09.2013


 English version:
Siberian Advances in Mathematics, 2015, 25:3, 191–205

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024