Abstract:
We deduce an analog of the Itô–Venttsel' formula for an Itô system of generalized stochastic differential equations (GSDE) with noncentered measure on the basis of a stochastic kernel of an integral invariant. We construct a system of GSDE whose solution is a kernel of an integral invariant connected with a solution to GSDE with noncentered measure. We introduce the notion of a stochastic first integral of a system of GSDE with noncentered measure and find conditions under which a random function is a first integral of a given system of GSDE.
Key words:Itô–Venttsel' formula, generalized stochastic differential equation, noncentered Poisson measure, kernel of an integral invariant, stochastic first integral.