RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2015 Volume 18, Number 2, Pages 93–111 (Mi mt295)

This article is cited in 6 papers

On the rate of convergence in the individual ergodic theorem for the action of a semigroup

I. V. Podviginab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We consider the individual ergodic theorem for the action of a semigroup of measure-preserving mappings. We estimate the rate of convergence using estimates for the probability of large deviations for the ergodic averages with an essentially bounded averaging function. We find estimates for the rate of convergence of the ergodic averages in the cases of Benedicks–Carleson quadratic mappings, expanding mappings of Pomeau–Manneville type with a neutral point, and multidimensional shifts.

Key words: the rate of convergence in an ergodic theorem, large deviations, quadratic mapping, multidimensional shift.

UDC: 517.987+519.214.8+517.518

Received: 13.11.2014

DOI: 10.17377/mattrudy.2015.18.206


 English version:
Siberian Advances in Mathematics, 2016, 26:2, 139–151

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025