RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2019 Volume 22, Number 1, Pages 178–204 (Mi mt352)

This article is cited in 11 papers

Inverse problems with pointwise overdetermination for some quasilinear parabolic systems

S. G. Pyatkovab, V. V. Rotkoa

a Yugra State University, Khanty-Mansiisk, 628012 Russia
b Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia

Abstract: In the article, we examine well-posedness questions in the Sobolev spaces of the inverse source problem in the case of a quasilinear parabolic system of the second order. The main part of the operator is linear. The overdetermination conditions are values of a solution at some collection of interior points. It is demonstrated that, in the case of at most linear growth of the nonlinearity, there exists a unique global (in time) solution and the problem is well-posed in the Sobolev classes. The conditions on the data are minimal and the results are sharp.

Key words: parabolic system, inverse problem, source function, convection-diffusion, heat-and-mass transfer.

UDC: 517.956

Received: 27.07.2018
Revised: 22.09.2018
Accepted: 10.10.2018

DOI: 10.33048/mattrudy.2019.22.107


 English version:
Siberian Advances in Mathematics, 2020, 30:2, 124–142

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025