RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2019 Volume 22, Number 2, Pages 21–33 (Mi mt355)

This article is cited in 7 papers

On $\mathbb R$-linear problem and truncated Wiener–Hopf equation

A. F. Voronin

Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia

Abstract: We consider the $\mathbb R$-linear problem (also known as the Markushevich problem and the generalized Riemann boundary value problem) and the convolution integral equation of the second kind on a finite interval (also known as the truncated Wiener–Hopf equation). We find new conditions for correct solvability of the $\mathbb R$-linear problem and the truncated Wiener–Hopf equation.

Key words: $\mathbb R$-linear problem, Markushevich problem, Riemann boundary value problem, generalized Riemann boundary value problem, partial indices, convolution, truncated Wiener–Hopf equation, existence of a solution, stability, uniqueness.

UDC: 517.544+517.968

Received: 23.01.2019
Revised: 06.02.2019
Accepted: 27.02.2019

DOI: 10.33048/mattrudy.2019.22.202


 English version:
Siberian Advances in Mathematics, 2020, 30:2, 143–151

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025