RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2019 Volume 22, Number 2, Pages 157–174 (Mi mt362)

This article is cited in 7 papers

Stability of linear delay differential equations arising in models of living systems

N. V. Pertsev

Sobolev Institute of Mathematics, Omsk Division, Omsk, 644099 Russia

Abstract: We present the results of our study of the stability of the trivial solution to a system of linear delay differential equations decomposable into two subsystems. Each of the subsystems contains matrices of a special form. We establish conditions for the asymptotic stability and nonstability of the trivial solution on the basis of the properties of stable matrices and nondegenerate $M$-matrices. The stability of equilibria for mathematical models in immunology and epidemiology is investigated.

Key words: system of linear delay differential equations, stability of the trivial solution, nonnegative matrix, stable matrix, $M$-matrix, Waževski system of equations, mathematical models in immunology and epidemiology.

UDC: 517.929:57

Received: 21.10.2018
Revised: 20.11.2018
Accepted: 27.02.2019

DOI: 10.33048/mattrudy.2019.22.209


 English version:
Siberian Advances in Mathematics, 2020, 30:1, 43–54

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024