RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2006 Volume 9, Number 2, Pages 3–22 (Mi mt45)

This article is cited in 5 papers

Dimensions of $\mathbb R$-Trees and Self-Similar Fractal Spaces of Nonpositive Curvature

P. D. Andreeva, V. N. Berestovskiib

a M. V. Lomonosov Pomor State University
b Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science

Abstract: We study various dimensions of spaces with nonpositive curvature in the A. D. Alexandrov sense, in particular, of $\mathbb R$-trees. We find some conditions necessary and sufficient for the metric space to be an $\mathbb R$-tree and clarify relations between the topological, Hausdorff, entropy, and rough dimensions. We build the examples of $\mathbb R$-trees and CAT(0)-spaces in which strict inequalities between the topological, Hausdorff, and entropy dimensions hold; we also show that the Hausdorff and entropy dimensions can be arbitrarily large while the topological dimension remains fixed.

Key words: $\mathbb R$-tree, CAT(0)-space, self-similar fractal, topological dimension, Hausdorff dimension, entropy dimension, rough dimension, symbolic dynamics.

UDC: 515.124.3

Received: 18.07.2005


 English version:
Siberian Advances in Mathematics, 2007, 17:2, 79–90

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024