RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2022 Volume 25, Number 1, Pages 51–62 (Mi mt659)

On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents

N. A. Bokayeva, Zh. M. Onerbekb

a Eurasian National University named after L.N. Gumilyov, Astana
b Karaganda State Technical University

Abstract: We consider the global Morrey-type spaces ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents $p(x)$, $\theta(x)$ and general function $w(x,r)$ defining these spaces. In the case of unbounded sets $\Omega\subset{\mathbb{R}}^{n}$, we prove boundedness of the Hardy–Littlewood maximal operator and potential type operator in these spaces. We prove Spanne-type results on the boundedness of the Riesz potential ${I}^{\alpha}$ in global Morrey-type spaces with variable exponent ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$.

Key words: boundedness, Riesz potential, fractional maximal operator, global Morrey-type spaces with variable exponent.

UDC: 517.5

Received: 27.02.2022
Revised: 10.04.2022
Accepted: 12.05.2022

DOI: 10.33048/mattrudy.2022.25.102



© Steklov Math. Inst. of RAS, 2024