RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2004 Volume 7, Number 1, Pages 3–12 (Mi mt68)

This article is cited in 6 papers

Decidable Boolean Algebras of Characteristic $(1,0,1)$

P. E. Alaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We prove that every 2-constructive Boolean algebra with elementary characteristic $(1,0,1)$ is strongly constructivizable (decidable). This completes the study of the relation between $n$-constructibility and strong constructibility for Boolean algebras of characteristics $(0,*,*)$ and $(1,*,*)$. In addition, we give a description for 3-constructive Boolean algebras by means of a $\Delta^0_2$-computable invariant.

Key words: Boolean algebra, algorithm, computability, constructive structure.

UDC: 512.563+510.5+510.6

Received: 24.07.2003


 English version:
Siberian Advances in Mathematics, 2005, 15:1, 1–10

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025