RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2004 Volume 7, Number 1, Pages 153–188 (Mi mt73)

This article is cited in 6 papers

The Ćurgus Condition in Indefinite Sturm–Liouville Problems

A. I. Parfenov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: For a finite signed measure $\mu$ on $(-1,1)$ changing its sign at zero, we study the Riesz basis property in the space $L_{2,|\mu|}$ of generalized eigenfunctions of the spectral problem $-u''(x)dx=\lambda u(x)d\mu(x)$, $-1<x<1$, $u(-1)=u(1)=0$. Primarily, our approach is based on the Ćurgus criterion. We present a criterion for the basis property in the case of an odd measure and sufficient conditions (in terms of $\mu$) known so far for a measure absolutely continuous with respect to the Lebesgue measure whose support is the whole interval. We prove the Riesz basis property for a degenerate discrete measure of a special form and a new necessary condition for this property. For a dense embedding $V\subset H=H'$ of a reflexive Banach space $V$ into a Hilbert space $H$ and a symmetric unitary (in $H$) operator $J$, we consider the interpolation equality $\bigl(V,(JV)'\bigr)_{1/2,2}=H$ applicable to nonlinear evolutionary equations of mixed type. We also exhibit conditions ensuring this equality and generalizing sufficient conditions for the basis property.

Key words: indefinite spectral problem, Riesz basis, contraction operator, preservation of boundary values, holomorphic functional calculus, the Kato square root problem, mixed type equation.

UDC: 517.927.25+517.982.224

Received: 06.03.2003


 English version:
Siberian Advances in Mathematics, 2005, 15:2, 68–103

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024