Abstract:
In the present article, we describe the spaces $\bigl(H_{p,\Psi}^m(\Omega),L_{p,\omega}(\Omega)\bigr)_{\theta,p}$, where the norms on $H_{p,\Psi}^m(\Omega)$ and on $L_{p,\omega}(\Omega)$ are defined as follows:
\begin{align*}
\|u\|_{H_{p,\Psi}^m(\Omega)}^p&=\int_{\Omega}\sum_{|\alpha|\le m}\omega_{\alpha}\bigl|D^{\alpha}u(x)\bigr|^p\,dx,
\\
\|u\|_{L_{p,\omega}(\Omega)}^p&=\int_{\Omega}\omega(x)\bigl|u(x)\bigr|^p\,dx,
\end{align*}
with $\omega_{\alpha}$, $\omega$ continuous positive functions on $\Omega$. The results obtained are applicable to studying elliptic eigenvalue problems with an indefinite weight function.