RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2001 Volume 4, Number 1, Pages 122–173 (Mi mt8)

This article is cited in 5 papers

Interpolation of Weighted Sobolev Spaces

S. G. Pyatkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: In the present article, we describe the spaces $\bigl(H_{p,\Psi}^m(\Omega),L_{p,\omega}(\Omega)\bigr)_{\theta,p}$, where the norms on $H_{p,\Psi}^m(\Omega)$ and on $L_{p,\omega}(\Omega)$ are defined as follows:
\begin{align*} \|u\|_{H_{p,\Psi}^m(\Omega)}^p&=\int_{\Omega}\sum_{|\alpha|\le m}\omega_{\alpha}\bigl|D^{\alpha}u(x)\bigr|^p\,dx, \\ \|u\|_{L_{p,\omega}(\Omega)}^p&=\int_{\Omega}\omega(x)\bigl|u(x)\bigr|^p\,dx, \end{align*}
with $\omega_{\alpha}$, $\omega$ continuous positive functions on $\Omega$. The results obtained are applicable to studying elliptic eigenvalue problems with an indefinite weight function.

Key words: interpolation space, weighted Sobolev space, Besov space, Hardy inequality.

UDC: 517.95

Received: 08.12.1998


 English version:
Siberian Advances in Mathematics, 2000, 10:3, 83–132

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025