RUS  ENG
Full version
JOURNALS // Matematicheskie Trudy // Archive

Mat. Tr., 2003 Volume 6, Number 2, Pages 144–208 (Mi mt95)

This article is cited in 4 papers

Boundary Value Problems for Some Classes of Singular Parabolic Equations

S. G. Pyatkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We study the question of solvability of boundary value problems for the parabolic equation
$$ Mu=g(x,t)u_t+L(x,t,D_x)u=f(x,t), \quad (x,t)\in Q=G\times (0,T) \quad (T\le\infty), $$
where $L$ is an elliptic operator in the space variables of order $2m$ defined in a bounded domain $G\subset\mathbb R^n$. We assume that the operator $L$ is coercive and the corresponding boundary value problem $Lu=f$, $B_ju\big|_{\partial G}=0$ admits a variational statement. The function $g(x,t)$ is nonsmooth in $x$ and can change its sign in $Q$.

Key words: boundary value problems for parabolic equations, parabolic equation with changing time direction, singular parabolic equation.

UDC: 517.95

Received: 02.09.2002


 English version:
Siberian Advances in Mathematics, 2004, 14:3, 63–125

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025