RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2014 Volume 5, Issue 2, Pages 79–85 (Mi mvk119)

On a property of quadratic Boolean functions

N. A. Kolomeec

Sobolev Institute of Mathematics SB RAS, Novosibirsk

Abstract: Let a Boolean function $f$ in $2k$ variables be affine on an affine subspace of dimension $k$ if and only if $f$ is affine on any its shift. Then it is proved that algebraic degree of $f$ may be more than 2 only if there is no affine subspace of dimension $k$ that $f$ is affine on it.

Key words: Boolean functions, bent functions, quadratic functions.

UDC: 519.716.5+519.719.2

Received 25.IX.2013

Language: English

DOI: 10.4213/mvk119



© Steklov Math. Inst. of RAS, 2024