RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2014 Volume 5, Issue 4, Pages 99–127 (Mi mvk137)

This article is cited in 3 papers

Orbital derivatives on residue rings. Part I. General properties

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of the Russian Federation, Moscow
b National Nuclear Research University, Moscow

Abstract: For mappings $f\colon H\to F$, where $H$ and $F$ are Abelian groups, a definition of the $t^{th}$-order orbital derivative is introduced. The definition is based on structures of orbits of subgroups of $H$. Properties of the $t^{th}$-order orbital derivative on the residue ring $\mathbb Z_{2^n}$ are described.

Key words: orbital derivative, Abelian groups, orbits of groups, impossible sets.

UDC: 519.719.2

Received 22.IV.2013

DOI: 10.4213/mvk137



© Steklov Math. Inst. of RAS, 2024