RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2015 Volume 6, Issue 3, Pages 33–45 (Mi mvk159)

Local characteristics of smoothing properties of endomorphisms of finite Abelian groups

V. O. Drelikhova, I. A. Kruglovb

a LLC "Certification Research Center", Moscow
b Academy of Cryptography of the Russian Federation, Moscow

Abstract: Let $G$ be a finite Abelian group, $G^n$ be its $n$-fold Cartesian product, and $\vec\xi=(\xi_1,\xi_2,\dots,\xi_n)$ be a random element of $G^n$. We investigate the local characteristics of closeness of distribution of random element $H(\vec\xi\,)$, where $H\colon G^n\to G^m$, to the uniform distribution on $G^m$. Main results are connected with the case of independent identically distributed elements $\xi_1,\xi_2,\dots,\xi_n$ and endomorphism $H$ of group $G^n$ onto the group $G^m$.

Key words: smoothing of distributions, endomorphism, Fourier coefficients.

UDC: 512.541.5+519.212.2+519.254.1

Received 30.V.2015

DOI: 10.4213/mvk159



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024