RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2017 Volume 8, Issue 2, Pages 65–76 (Mi mvk224)

This article is cited in 4 papers

Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings

M. A. Goltvanitsa

Certification Research Center, LLC, Moscow

Abstract: Let $p$ be a prime number, $R = \mathrm{GR}(q^d, p^d)$, where $q = p^r$, be a Galois ring, $S = \mathrm{GR}(q^{nd}, p^d)$ be its extension. We prove a non-commutative generalization of the well-known Hamilton–Cayley theorem. Using this result we prove the existence of roots in some extension $\mathcal{K}$ of $\check{S}$ for characteristic polynomials of skew maximal period linear recurrent sequences over $S$. Also for these polynomials we investigate the structure of the set of their roots.

Key words: non-commutative Hamilton–Cayley theorem, skew LRS, maximal period, Galois ring.

UDC: 519.719.2

Received 17.III.2016

Language: English

DOI: 10.4213/mvk224



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024