RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2011 Volume 2, Issue 1, Pages 29–73 (Mi mvk25)

This article is cited in 4 papers

Basises of integers under the multiplace shift operations

F. M. Malyshev

Academy of Cryptography of Russian Federation, Moscow

Abstract: A notion of $(k,m)$-basis of $\mathbb Z$ is defined for integers $k,m$ ($0<k<m$, $(k,m)=\nobreakspace1$). Its definition uses an extension operation: a subset $U\subset\mathbb Z$ may be extended to $U\cup\{i,i+k,i+m\}$ if $|U\cap\{i,i+k,i+m\}|=2$ for some $i\in\mathbb Z$. A minimal subset $S\subset\mathbb Z$ is a $(m,k)$-basis if each $z\in\mathbb Z$ belongs to an extension of $S$ obtained by several extension operations. A structure of $(m,k)$-basises is investigated, precise bounds for the number of their elements are obtained.

Key words: integer lattices, quasigroup relations, minimal basis.

UDC: 512.532

Received 22.IV.2010

DOI: 10.4213/mvk25



© Steklov Math. Inst. of RAS, 2025