RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2018 Volume 9, Issue 2, Pages 99–102 (Mi mvk258)

This article is cited in 2 papers

On quantiles of minimal codeword weights of random linear codes over $\mathbf{F}_p$

A. M. Zubkov, V. I. Kruglov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: We propose explicit equations for two-sided estimates of quantiles of minimal non-zero codeword weight distributions for random equiprobable linear code with given dimension over the prime field $\mathbf{F}_p$. It is shown that the differences between quantiles of these distributions are bounded by values depending only on $p$ and levels of quantiles.

Key words: random linear codes, distributions of minimal codeword weights, quantile estimates.

UDC: 519.719.2

Received 06.II.2017

Language: English

DOI: 10.4213/mvk258



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024