RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2018 Volume 9, Issue 3, Pages 99–108 (Mi mvk264)

This article is cited in 5 papers

On the sets of images of $k$-fold iteration of uniform random mapping

V. O. Mironkina, V. G. Mikhailovb

a National Research University Higher School of Economics, Moscow
b Steklov Mathematical Institute of RAS, Moscow

Abstract: The properties of the graph of $k$-fold iteration of uniform random mapping $f\colon \{1,\ldots,n\}\to \{1,\ldots,n\}$ are studied. Some recurrence formulas for the probabilities for a vertex to belong to the set of images $f^k(\{1,\ldots,n\})$ and to the set of the initial vertices in the graph of $f^k$ are obtained.

Key words: uniform random mapping, iteration of random mapping, graph of a mapping, image, pre-image, initial vertex.

UDC: 519.212.2+519.719.2

Received 11.V.2017, 05.VI.2018

DOI: 10.4213/mvk264



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024