RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2018 Volume 9, Issue 4, Pages 31–52 (Mi mvk268)

This article is cited in 3 papers

Parameters of a class of functions over a finite field

A. D. Bugrov, O. V. Kamlovskii

Certification Research Center, LLC, Moscow

Abstract: We study the class of functions defined on a finite field $GF(q)$ and constructed by means of linear recurrent sequences over the Galois ring $GR(q^n, p^n)$. For this class we investigate: the distances between functions, the distance to the class of affine functions, the number of constructed functions and the number of preimages of elements under action of functions. It is shown that the functions are significantly distant from the class of all affine functions.

Key words: linear recurrent sequences, discrete functions, finite fields, Galois ring, cross-correlation function.

UDC: 519.716.5+519.113.6

Received 18.IV.2018

DOI: 10.4213/mvk268



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024