RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2018 Volume 9, Issue 4, Pages 85–100 (Mi mvk271)

This article is cited in 2 papers

The number of maximal period polynomial mappings over the Galois fields of odd characteristics

D. M. Ermilov

Certification Research Center, LLC, Moscow

Abstract: Let $R = GR(q^n, p^n)$ be a Galois ring of cardinality $q^n$ and characteristics $p^n$, where $q = p^m$, $m, n > 1$. Let the sequence $U = \{u_i\}$ is defined by equations $u_{i+1} = f(u_i)$, $i \in \mathbb N_0$, and $f$ be a polynomial mapping of the ring $R$. It was proved earlier that the maximal possible period of $U$ equals $q(q-1)p^{n-2}$. Here we find the number of polynomial mappings over $R$ having maximal possible periods for $p\ne2$.

Key words: Galois rings, nonlinear generators, pseudorandom sequences, polynomial congruence generator.

UDC: 519.213.21

Received 18.IV.2018

DOI: 10.4213/mvk271



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024