RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2019 Volume 10, Issue 2, Pages 107–116 (Mi mvk288)

This article is cited in 1 paper

Exact maximum expected differential and linear probability for $2$-round Kuznyechik

V. A. Kiryukhin

JSC “InfoTeCS”, Moscow, Russia

Abstract: This paper presents the complete description of the best differentials and linear hulls in $2$-round Kuznyechik. We proved that $2$-round maximal expected differential probability equals $2^{-86.66\dots}$ and maximal expected linear probability equals $2^{-76.739\dots}$. A comparison is made with similar results for the AES cipher.

Key words: Kuznyechik, LSX, MDS codes, differential cryptanalysis, linear cryptanalysis.

UDC: 519.719.2

Received 06.II.2018

Language: English

DOI: 10.4213/mvk288



© Steklov Math. Inst. of RAS, 2024