RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2019 Volume 10, Issue 3, Pages 101–116 (Mi mvk303)

Variance of the additive weight deficit of equiprobable involution on the residue group

V. N. Sachkov, I. A. Kruglov

Academy of Cryptography of the Russian Federation, Moscow

Abstract: We find exact and asymptotic formulas for the variance of the random variable $\zeta_n$ which is equal to the weight deficit of random involution defined on the additive group of residues modulo natural number $n$. The asymptotic formula for $n\to\infty$ has the following form:
$$ \mathbf{D}{{\zeta}_{n}}=n\left(e^{-\frac{1}{2}}-\frac{3}{2}{{e}^{-1}} \right)\left(1+O\left(\frac{1}{n^{\frac{1}{3}}} \right) \right). $$


Key words: random involution, additive weight of the two-element cycle, weight deficit.

UDC: 519.212.2

Received 29.IV.2019

DOI: 10.4213/mvk303



© Steklov Math. Inst. of RAS, 2025