Abstract:
We find exact and asymptotic formulas for the variance of the random variable $\zeta_n$ which is equal to the weight deficit of random involution defined on the additive group of residues modulo natural number $n$. The asymptotic formula for $n\to\infty$ has the following form:
$$
\mathbf{D}{{\zeta}_{n}}=n\left(e^{-\frac{1}{2}}-\frac{3}{2}{{e}^{-1}} \right)\left(1+O\left(\frac{1}{n^{\frac{1}{3}}} \right) \right).
$$
Key words:random involution, additive weight of the two-element cycle, weight deficit.