RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2011 Volume 2, Issue 2, Pages 55–80 (Mi mvk31)

This article is cited in 6 papers

On the distribution of the numbers of solutions of random inclusions

V. A. Kopytceva, V. G. Mikhailovb

a Academy of Cryptography of Russian Federation, Moscow
b Steklov Mathematical Institute of RAS, Moscow

Abstract: For given sets $D$ and $B$ of vectors in linear spaces $V^n$ and $V^T$ over the field $K=GF(q)$ we consider the number of solutions $\xi(D,F,B)$ of the system of inclusions $x\in D$, $A_1x+A_2 f(x)\in B$, where $A_1$ and $A_2$ are random $T\times n$ and $T\times m$ matrices over $K$ with independent elements and $f\colon V^n\to V^m$ is a given mapping. Sufficient conditions for the convergence of distributions of $\xi(D,F,B)$ to the Poisson or compound Poisson distributions are found. Results are applied to the number of solutions of a system of random polynomial equations.

Key words: random inclusions, systems of random equations, number of solutions, Poisson limit theorem.

UDC: 519.212.2

Received 25.I.2011

DOI: 10.4213/mvk31



© Steklov Math. Inst. of RAS, 2024