RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2020 Volume 11, Issue 1, Pages 9–26 (Mi mvk312)

This article is cited in 4 papers

On transversals of splitted Latin squares with identical substitution ${\chi_{ACDB}}$

V. V. Borisenko

LLC «Certification Research Center», Moscow

Abstract: We consider the splitted homogeneous Latin squares, i.e. Latin squares of order $2n$ with elements from $\left\{0, \ldots, 2n - 1\right\}$ such that reducing modulo $n$ leads to a $\left( 2n \times 2n \right)$-matrix consisting of four Latin squares $\left(A,B,C,D\right)$ of order $n$ with identity $\chi_{ACDB}$ permutation. The method for finding all possible numbers of transversals for Latin Squares of this kind of order $2n$ was described. This method is based on the notion of transversal code introduced in the paper.

Key words: Latin square, transversal, isotopism, linear code.

UDC: 519.143

Received 29.IV.2019

DOI: 10.4213/mvk312



© Steklov Math. Inst. of RAS, 2025