RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2020 Volume 11, Issue 2, Pages 137–151 (Mi mvk327)

Improving OBDD attacks against stream ciphers

M. Hamann, M. Krause, A. Moch

Universität Mannheim, Germany

Abstract: OBDD-attacks against stream ciphers compute the secret initial state by generating a sequence of $\mathcal{O}(n)$ ordered binary decision diagrams (OBDDs) of maximal width $\mathcal{O}(2^{\frac{1-\alpha}{1+\alpha}n})$, where $n$ denotes the inner state length and $\alpha\in (0,1)$ is the compression rate of the cipher. We propose and experimentally verify the following strategy of avoiding the huge storage demand of $\mathcal{O}(2^{\frac{1-\alpha}{1+\alpha}n})$. (1) Generate in parallel two OBDDs $P$ and $Q$ such that $P \wedge Q$ has only a few satisfying assignments. (2) Compute the set $(P \wedge Q)^{-1}(1)$, containing the secret inner state, by a new breadth-first-search based algorithm. We show that this approach improves standard OBDD-attacks drastically.

Key words: symmetric cryptography, stream ciphers, OBDD attacks.

UDC: 519.719.2

Received 05.XI.2019

Language: English

DOI: 10.4213/mvk327



© Steklov Math. Inst. of RAS, 2024