RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2020 Volume 11, Issue 3, Pages 5–19 (Mi mvk328)

This article is cited in 2 papers

$k$-splitted and $k$-homogeneous Latin squares and their transversals

V. V. Borisenko

LLC «Sertification Research Center», Moscow

Abstract: We consider the $k$-splitted Latin squares, i.e. Latin squares of order $kn$ with elements from $\left\{ {0, \ldots ,kn - 1} \right\}$ such that after reducing modulo $n$ we obtain $\left( {kn \times kn} \right)$-matrix consisting of $k^2$ Latin squares of order $n$. If these $k^2$ Latin squares of order $n$ are identical, the original Latin square of order $kn$ is called $k$-homogeneous. The precise number of all $k$-homogeneous and lower bound for the number of all $k$-splitted Latin squares are found. Some characteristics of transversals for $k$-splitted Latin squares are described.

Key words: Latin square, transversal, directed graph.

UDC: 519.143

Received 15.V.2020

DOI: 10.4213/mvk328



© Steklov Math. Inst. of RAS, 2025