RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2021 Volume 12, Issue 1, Pages 23–57 (Mi mvk347)

This article is cited in 2 papers

New representaions of elements of skew linear recurrent sequences via trace function based on the noncommutative Hamilton – Cayley theorem

M. A. Goltvanitsa

LLC «Certification Research Center», Moscow

Abstract: Let $p$ be a prime number, $R=\mathrm{GR}(q^d,p^d)$ be a Galois ring of cardinality $q^d$ and characteristic $p^d$, where $q = p^r$, $S=\mathrm{GR}(q^{nd},p^d)$ be its extension of degree $n$ and $\mathrm{End}(_RS)$ be a ring of endomorphisms of the module $_RS$. A sequence $v$ over $S$ satisfying a recursion law
$$ \forall i\in\mathbb{N}_0 \colon v(i+m)= \ \psi_{m-1}(v(i+m-1))+\ldots+\psi_0(v(i)), $$
$\psi_0,\ldots,\psi_{m-1}\in \mathrm{End}(_RS),$ is called skew linear recurrent sequence (LRS) over $S$; the maximal period of such sequence is equal to $(q^{mn}-1)p^{d-1}$. Using the trace function for representations of elements of skew LRS of maximal period we show that such LRS may be linearized if the coefficients in the recursion law are pairwise commuting.

Key words: Galois ring, Frobenius automorphism, ML-sequence, skew LRS, trace function.

UDC: 519.113.6+512.714+519.719.2

Received 15.V.2020

DOI: 10.4213/mvk347



© Steklov Math. Inst. of RAS, 2024