RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2021 Volume 12, Issue 4, Pages 65–85 (Mi mvk395)

This article is cited in 3 papers

Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of the Russian Federation, Moscow
b Bauman Moscow State Technical University, Moscow

Abstract: For all nonabelian $2$-groups with cyclic subgroup of index $2$ (the dihedral group $D_{2^m}$, the generalized quaternion group $Q_{2^m}$, the modular maximal-cyclic group $M_{2^m}$, the quasidigedral group $SD_{2^m}$) we describe properties of regular permutation representations. For each group we characterize all nontrivial imprimitivity systems and corresponding homomorphisms.

Key words: dihedral group, generalized quaternion group, modular maximal-cyclic group, quasidihedral group, permutation representation, imprimitive group.

UDC: 512.544

Received 20.V.2020

DOI: 10.4213/mvk384



© Steklov Math. Inst. of RAS, 2024