RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2022 Volume 13, Issue 1, Pages 69–99 (Mi mvk402)

This article is cited in 1 paper

Periodical properties of multidimensional polynomial transformations of Galois – Eisenstein ring

O. A. Kozlitin

Certification Research Center, LLC, Moscow

Abstract: The paper is concerned with $m$-dimensional polynomial transformations of Galois – Eisenstein ring $R$ (that is a finite commutative local ring of principal ideals). The maximum $L_m(R)$ cycle lengths of such polynomial transformations is estimated. Under condition $p > 2$, the constraint of the function $L_m$ on the class of Galois – Eisenstein rings having a power $q_n = p^{tn}$ and nilpotency index $n$ takes the maximum value on the Galois rings.

Key words: polynomial transformation, cyclic type, Galois – Eisenstein ring.

UDC: 519.113.6+519.12+519.719.2

Received 12.V.2021

DOI: 10.4213/mvk402



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024