RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2023 Volume 14, Issue 1, Pages 5–14 (Mi mvk427)

On the closeness of distribution of some random variable to the equiprobable one

V. A. Vatutin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Let $b \geqslant 2$ and $N$ be natural numbers, $X_0,X_1,\ldots ,X_{n-1}$ be nonhomogeneous sequence of independent random variables taking values $0, 1,\ldots , b-1$,
$$Y_{n}=X_{0}+bX_{1}+\ldots+X_{n-2}b^{n-2}+X_{n-1}b^{n-1}$$
and
$$Z_{n}=Y_{n}\text{ mod }N.$$
We estimate the closeness of distribution of random variable $Z_n$ to the uniform distribution on $\{0,1,\ldots,N-1\}$ in the case when $b$ and $N$ are mutually prime.

Key words: transformations of random variables, modulo reduction, equiprobable distributions, distances between distributions.

UDC: 519.213

Received 12.V.2022

DOI: 10.4213/mvk427



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024