RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2023 Volume 14, Issue 4, Pages 25–53 (Mi mvk454)

This article is cited in 1 paper

Elementary Abelian regular subgroups of vector space affine group related to cryptanalysis

M. A. Goltvanitsa

LLC «Certification Research Center», Moscow

Abstract: Let $p$ be a prime number, $(V,+)$ be a finite-dimensional vector space over finite field $\mathbb{F}_p$ of cardinality $p$. We investigate elementary Abelian regular subgroups $\mathcal{T}$ of affine group $\mathrm{AGL}(V)$. Every such subgroup determines new binary operation $\circ$ on the set $V$ and can be used in cryptanalysis. We investigate the structure properties of the group of linear maps associated with the group $\mathcal{T}$. The membership criterion for the right regular representation of group $(V, +)$ to belong to the normalizer of $\mathcal{T}$ in symmetric group $\mathrm{Sym}\,(V)$ is obtained. A practically realizable algorithm for testing whether given $\mathrm{s}$-box belongs to the normalizer of some group $\mathcal{T}$ in $\mathrm{Sym}\,(V)$ is proposed and investigated.

Key words: elementary Abelian regular group, affine group, algebraic cryptanalysis, alrernative operation.

UDC: 519.544.2+519.719.2

Received 18.V.2023

DOI: 10.4213/mvk454



© Steklov Math. Inst. of RAS, 2024