RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2012 Volume 3, Issue 2, Pages 63–78 (Mi mvk54)

Poisson approximation for the distribution of the number of “parallelograms” in a random sample from $\mathbb Z_N^q$

V. I. Kruglov

Steklov Mathematical Institute of RAS, Moscow

Abstract: For a random sample with replacement $\xi_1,\dots,\xi_T$ from a group $\mathbb Z_N^q$, $N\geq4$, we consider the distribution of the number $\zeta$ of 4-element subsets satisfying the relation of type $\xi_{i_1}-\xi_{i_2}=\xi_{i_3}-\xi_{i_4}$ and additional condition given in terms of a metric on this group. Estimates of the accuracy of Poisson approximation for the distribution of $\zeta$ are obtained and conditions of the weak convergence of $\zeta$ to the Poisson law are established.

Key words: random elements of a group, coincidence of differences, Poisson approximation.

UDC: 519.212.2+519.214

Received 20.V.2011

DOI: 10.4213/mvk54



© Steklov Math. Inst. of RAS, 2024