RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2012 Volume 3, Issue 3, Pages 35–55 (Mi mvk60)

This article is cited in 2 papers

Conditions of convergence to the Poisson distribution for the number of solutions of random inclusions

V. A. Kopytceva, V. G. Mikhailovb

a Academy of Cryptography of the Russian Federation, Moscow
b Steklov Mathematical Institute of RAS, Moscow

Abstract: Let $F$ be a random mapping of $n$-dimensional space $V^n$ over the finite field $GF(q)$ into $T$-dimensional space $V^T$ over the same field; let $D\subset V^n$, $B\subset V^T$. For the number of solutions of random inclusions $x\in D$, $F(x)\in B$ we find new sufficient conditions of weak convergence to the Poisson law as $n,T\to\infty$.

Key words: random inclusions, systems of random equations, number of solutions, Poisson convergence.

UDC: 519.212.2+519.214.5

Received 20.V.2011

DOI: 10.4213/mvk60



© Steklov Math. Inst. of RAS, 2024