RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2012 Volume 3, Issue 3, Pages 129–151 (Mi mvk64)

This article is cited in 1 paper

Structurally equivalent tuples in the equiprobable polynomial scheme

A. M. Shoitov

Academy of Cryptography of the Russian Federation, Moscow

Abstract: Let $X_1,\dots,X_n$ be a sequence of independent random variables with the uniform distribution on the set $\{1,\dots,N\}$. We describe limit discrete distributions of the number of $k$-element sets consisting of structurally equivalent $s$-tuples for $N,n,s\to\infty$, $sN^{-1}\to\alpha\in(0,1)$, $n(N)_sN^{-s}\to\lambda\in(0,\infty)$ and arbitrary $k\geqslant2$. The proofs are based on the Chen–Stein method.

Key words: sequences of independent trials, equiprobable polynomial scheme, structurally equivalent s-tuples, Chen–Stein method.

UDC: 519.212.2+519.214.5

Received 20.V.2011

DOI: 10.4213/mvk64



© Steklov Math. Inst. of RAS, 2024