RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2013 Volume 4, Issue 1, Pages 129–150 (Mi mvk77)

On an additive problem of number theory with random number of summands

A. N. Timashev

LLC "Certification Research Center", Moscow

Abstract: Asymptotic formulas for the mean and variance of the number of nonnegative integer solutions of the equation $x_1^m+\dots+x_s^m=N$ are obtained; here $m,s,N$ are integer positive numbers, $m=\mathrm{const}$, and $s$ is a random variable. Cases of the binomial and Poisson distributions of $s-1$ are considered. Proofs are based on the saddle point method. Analogous results for the number of nonnegative integer solutions of the inequality $x_1^m+\dots+x_s^m\le N$ are obtained also.

Key words: Diophantine equations, generating functions, saddle-point method, first moments of the number of solutions.

UDC: 511.34+519.212.2

Received 23.VI.2012

DOI: 10.4213/mvk77



© Steklov Math. Inst. of RAS, 2024