RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] // Archive

Mat. Vopr. Kriptogr., 2013 Volume 4, Issue 2, Pages 81–100 (Mi mvk85)

This article is cited in 4 papers

Nonlinear permutations of a space over a finite field induced by linear transformations of a module over a Galois ring

A. A. Nechaeva, A. V. Abornevb

a Academy of Cryptography of the Russian Federation, Moscow
b LLC "Certification Research Center", Moscow

Abstract: Nonlinear permutations of $m$-dimensional vector space $P^{(m)}$ over a finite field $P=\mathrm{GF}(q)$ induced by linear transforms of a module $R^{(m)}$ over a Galois ring $R=\mathrm{GR}(q^2,p^2)$, $q=p^r$, are constructed. The transforms constructed by iteration of linear recurrent transforms are studied separately. Some applications in cryptography are discussed.

Key words: digit-permutable matrix, DP-matrix, digit-permutable polynomial, DP-polynomial, Galois ring, block ciphering system.

UDC: 512.643

Received 18.IX.2012

Language: English

DOI: 10.4213/mvk85



© Steklov Math. Inst. of RAS, 2024