RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 93, Issue 1, Pages 104–110 (Mi mzm10134)

A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres

M. Obiedat

Gallaudet University

Abstract: A relationship between real, complex, and quaternionic vector fields on spheres is given by using a relationship between the corresponding standard inner products. The number of linearly independent complex vector fields on the standard $(4n-1)$-sphere is shown to be twice the number of linearly independent quaternionic vector fields plus $d$, where $d=1$ or $3$.

Keywords: complex vector field, quaternionic vector field, realification function, complexification function, James numbers.

UDC: 515.164.332

Received: 17.01.2011

DOI: 10.4213/mzm10134


 English version:
Mathematical Notes, 2013, 93:1, 151–157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024