RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 93, Issue 2, Pages 172–178 (Mi mzm10158)

This article is cited in 11 papers

Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System

M. G. Grigoryana, V. G. Krotovb

a Yerevan State University
b Belarusian State University, Minsk

Abstract: Suppose that $b_n\downarrow0$ and $\sum_{n=1}^{\infty}({b_n}/{n})=+\infty$. In this paper, it is proved that any measurable almost everywhere finite function on $[0,1]$ can be corrected on a set of arbitrarily small measure to a continuous function $\widetilde{f}$ so that the nonzero moduli $|A_n(\widetilde{f}\mspace{4mu})|$ of the Fourier–Faber–Schauder coefficients of the corrected function are $b_n$.

Keywords: Luzin's correction theorem, Faber–Schauder system, correcting function, Faber–Schauder spectrum.

UDC: 517.5

Received: 02.12.2011

DOI: 10.4213/mzm10158


 English version:
Mathematical Notes, 2013, 93:2, 217–223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024