RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 95, Issue 4, Pages 517–528 (Mi mzm10216)

This article is cited in 16 papers

On $\mathrm K$-$\mathbb P$-Subnormal Subgroups of Finite Groups

A. F. Vasil'eva, T. I. Vasilyevab, V. N. Tyutyanovc

a Francisk Skorina Gomel State University
b Belarusian State University of Transport
c International University "MITSO" (Gomel Branch)

Abstract: A subgroup $H$ of a group $G$ is said to be $\mathrm K$-$\mathbb P$-subnormal in $G$ if $H$ can be joined to the group by a chain of subgroups each of which is either normal in the next subgroup or of prime index in it. Properties of $\mathrm K$-$\mathbb P$-subnormal subgroups are obtained. A class of finite groups whose Sylow $p$-subgroups are $\mathrm K$-$\mathbb P$-subnormal in $G$ for every $p$ in a given set of primes is studied. Some products of $\mathrm K$-$\mathbb P$-subnormal subgroups are investigated.

Keywords: finite group, Sylow $p$-subgroup, $\mathrm K$-$\mathbb P$-subnormal subgroup, normal subgroup, subgroup of prime index, supersolvable group, formation of groups.

UDC: 512.542

Received: 20.10.2012
Revised: 31.07.2013

DOI: 10.4213/mzm10216


 English version:
Mathematical Notes, 2014, 95:4, 471–480

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025