RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 95, Issue 2, Pages 234–247 (Mi mzm10223)

This article is cited in 4 papers

Isometric Embeddings of Locally Euclidean Metrics in $\mathbb R^3$ as Conical Surfaces

S. N. Mikhalev, I. Kh. Sabitov

M. V. Lomonosov Moscow State University

Abstract: It is proved that if a domain with a locally Euclidean metric can be isometrically immersed in the Euclidean plane $\mathbb R^2$ with the standard metric, then it can be isometrically embedded in $\mathbb R^3$ as a conical surface whose projection on a sphere centered at the vertex of the cone is a self-avoiding planar graph with sufficiently smooth edges of specially selected lengths.

Keywords: locally Euclidean metric, isometric embedding, isometric immersion, conical surface, planar graph.

UDC: 519.173

Received: 29.12.2012

DOI: 10.4213/mzm10223


 English version:
Mathematical Notes, 2014, 95:2, 214–225

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024