Abstract:
The results obtained in this paper are related to the Palis–Pugh problem on the existence of an arc with finitely or countably many bifurcations which joins two Morse–Smale systems on a closed smooth manifold $M^n$. Newhouse and Peixoto showed that such an arc joining flows exists for any $n$ and, moreover, it is simple. However, there exist isotopic diffeomorphisms which cannot be joined by a simple arc. For $n=1$, this is related to the presence of the Poincaré rotation number, and for $n=2$, to the possible existence of periodic points of different periods and heteroclinic orbits. In this paper, for the dimension $n=3$, a new obstruction to the existence of a simple arc is revealed, which is related to the wild embedding of all separatrices of saddle points. Necessary and sufficient conditions for a Morse–Smale diffeomorphism on the $3$-sphere without heteroclinic intersections to be joined by a simple arc with a “source-sink” diffeomorphism are also found.