RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 97, Issue 1, Pages 23–34 (Mi mzm10375)

This article is cited in 2 papers

On Schur's Conjecture in $\mathbb R^4$

V. V. Bulankinaa, A. B. Kupavskiib, A. A. Polyanskiib

a M. V. Lomonosov Moscow State University
b Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moskovskaya obl.

Abstract: A diameter graph in $\mathbb R^d$ is a graph in which vertices are points of a finite subset of $\mathbb R^d$ and two vertices are joined by an edge if the distance between them is equal to the diameter of the vertex set. This paper is devoted to Schur's conjecture, which asserts that any diameter graph on $n$ vertices in $\mathbb R^d$ contains at most $n$ complete subgraphs of size $d$. It is known that Schur's conjecture is true in dimensions $d\le 3$. We prove this conjecture for $d=4$ and give a simple proof for $d=3$.

Keywords: diameter graph, Schur's conjecture, Borsuk's conjecture.

UDC: 514.12+519.157

Received: 10.07.2013
Revised: 05.05.2014

DOI: 10.4213/mzm10375


 English version:
Mathematical Notes, 2015, 97:1, 21–29

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024