RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 96, Issue 6, Pages 911–920 (Mi mzm10376)

Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors

V. S. Monakhova, I. K. Chirikb

a Francisk Skorina Gomel State University
b Gomel Engineering Institute, Ministry of Extraordinary Situations of the Republic of Belarus

Abstract: Let $p$ be a prime. Under certain additional conditions, we establish the $p$-supersolvability of a finite $p$-solvable group $G=AB$ with cyclic Sylow $p$-subgroups in $A$ and $B$. In particular, we prove that a finite group $G=AB$ is supersolvable provided that all Sylow subgroups in $A$ and $B$ are cyclic and either $G$ is 2-closed or $A$ and $B$ are maximal subgroups.

Keywords: finite group, solvability, supersolvability, Sylow subgroup, cyclic subgroup.

UDC: 512.542

Received: 11.08.2013
Revised: 20.11.2013

DOI: 10.4213/mzm10376


 English version:
Mathematical Notes, 2014, 96:6, 983–991

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024