Abstract:
An unbounded operator is said to be bisectorial if its spectrum is contained in two sectors lying, respectively, in the left and right half-planes and the resolvent decreases at infinity as $1/\lambda$. It is known that, for any bounded function $f$, the equation $u'-Au=f$ with bisectorial operator $A$ has a unique bounded solution $u$, which is the convolution of $f$ with the Green function. An example of a bisectorial operator generating a Green function unbounded at zero is given.
Keywords:bisectorial operator, linear differential equation, Green function, resolvent set, Fourier series.