RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 4, Pages 489–501 (Mi mzm10461)

This article is cited in 11 papers

On the Multiplicity of Eigenvalues of the Sturm–Liouville Problem on Graphs

A. T. Diaba, B. K. Kaldybekovab, O. M. Penkincb

a Ain Shams University
b Kazakh-British Technical University
c Voronezh State University

Abstract: Bounds for the multiplicity of the eigenvalues of the Sturm–Liouville problem on a graph, which are valid for a wide class of consistency (transmission) conditions at the vertices of the graph, are given. The multiplicities are estimated using the topological characteristics of the graph. In the framework of the notions that we use, the bounds turn out to be exact.

Keywords: geometric graph, ordinary differential equation on a graph, Sturm–Liouville problem on a graph, transmission conditions, multiplicity of eigenvalues.

UDC: 517.927

Received: 23.03.2014
Revised: 09.08.2015

DOI: 10.4213/mzm10461


 English version:
Mathematical Notes, 2016, 99:4, 492–502

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025