RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 98, Issue 5, Pages 769–781 (Mi mzm10472)

This article is cited in 1 paper

Generalization of the Law of the Iterated Logarithm for Associated Random Fields

A. P. Shashkin

Lomonosov Moscow State University

Abstract: A variant of the law of the iterated logarithm for associated fields for which the indexing set for partial sums can be arbitrarily unbounded is proved. Depending on the structure of this set, an explicit value of the upper limit in the law of the iterated logarithm is given.

Keywords: law of the iterated logarithm, associated random field, indexing set, multi-indexed random variable, covariance function, Cox–Grimmet coefficients, Bolthausen theorem.

UDC: 519.21

Received: 21.02.2014
Revised: 09.05.2014

DOI: 10.4213/mzm10472


 English version:
Mathematical Notes, 2015, 98:5, 831–842

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024